Substantia nigra D1 receptors and stimulation of striatal cholinergic interneurons by dopamine: a proposed circuit mechanism.
نویسندگان
چکیده
Dopamine release can regulate striatal acetylcholine efflux in vivo through at least two receptor mechanisms: (1) direct inhibition by dopamine D2 receptors on the cholinergic neurons, and (2) excitation initiated by dopamine D1 receptors. The neuroanatomical locus of the latter population of D1 receptors and the pathway(s) involved in the expression of their influence are controversial issues. We have tested the hypothesis that D1 receptors in substantia nigra pars reticulata are involved in the excitatory component of dopaminergic actions on striatal acetylcholine output. In vivo microdialysis was used in awake rats. Infusion of the selective D1 receptor agonist R(+)-1-Phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine-7,8-diol (SKF 38393) hydrochloride into pars reticulata of substantia nigra elicited a significant increase in striatal acetylcholine efflux. Likewise, D-amphetamine applied into pars reticulata of substantia nigra by reverse dialysis produced an elevation in acetylcholine output measured at a second microdialysis probe in the striatum. Application of D-amphetamine in the striatum by reverse dialysis elicited a decrease in striatal acetylcholine efflux that could be reversed subsequently by local application of D-amphetamine in substantia nigra pars reticulata. A 2 mg/kg intraperitoneal dose of D-amphetamine, which has no net effect on striatal acetylcholine output under control conditions, elicited a significant decrease in acetylcholine efflux when the D1 receptor antagonist R(+)-7-Chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4, 5-tetrahydro-1H-3-benzazepine (SCH 23390) hydrochloride was applied simultaneously via a second microdialysis probe in substantia nigra pars reticulata. Thus, an excitatory D1-mediated influence on striatal acetylcholine output is initiated in substantia nigra pars reticulata, and this influence contributes to the effects of indirect dopaminergic agonists such as D-amphetamine on striatal acetylcholine efflux. These results indicate an important role of somatodendritic dopamine release, in addition to nerve terminal dopamine release, in the regulation of activity in basal ganglia circuits.
منابع مشابه
Activation of D2-like dopamine receptors reduces synaptic inputs to striatal cholinergic interneurons.
Dopamine (DA) plays a crucial role in the modulation of striatal function. Striatal cholinergic interneurons represent an important synaptic target of dopaminergic fibers arising from the substantia nigra and cortical glutamatergic inputs. By means of an electrophysiological approach from corticostriatal slices, we isolated three distinct synaptic inputs to cholinergic interneurons: glutamate-m...
متن کاملModulation of an afterhyperpolarization by the substantia nigra induces pauses in the tonic firing of striatal cholinergic interneurons.
Striatal cholinergic interneurons, also known as tonically active neurons (TANs), acquire a pause in firing during learning of stimulus-reward associations. This pause response to a sensory stimulus emerges after repeated pairing with a reward. The conditioned pause is dependent on dopamine from the substantia nigra, but its underlying cellular mechanism is unknown. Using in vivo intracellular ...
متن کاملFunctional connectome of the striatal medium spiny neuron.
Dopamine system disorders ranging from movement disorders to addiction and schizophrenia involve striatal medium spiny neurons (MSNs), yet their functional connectivity has been difficult to determine comprehensively. We generated a mouse with conditional channelrhodopsin-2 expression restricted to medium spiny neurons and assessed the specificity and strength of their intrinsic connections in ...
متن کامل6-Hydroxydopamine lesions of rat substantia nigra up-regulate dopamine-induced phosphorylation of the cAMP-response element-binding protein in striatal neurons.
Destruction of the substantia nigra produces striatal D1 dopamine receptor supersensitivity without increasing receptor number or affinity, thus implicating postreceptor mechanisms. The nature of these mechanisms is unknown. Increased striatal c-fos expression ipsilateral to a unilateral lesion of the substantia nigra in rats treated with appropriate dopamine agonists provides a cellular marker...
متن کاملStriatal Cholinergic Interneurons Modulate Spike-Timing in Striosomes and Matrix by an Amphetamine-Sensitive Mechanism
The striatum is key for action-selection and the motivation to move. Dopamine and acetylcholine release sites are enriched in the striatum and are cross-regulated, possibly to achieve optimal behavior. Drugs of abuse, which promote abnormally high dopamine release, disrupt normal action-selection and drive restricted, repetitive behaviors (stereotypies). Stereotypies occur in a variety of disor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 17 21 شماره
صفحات -
تاریخ انتشار 1997